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In this article a sharp upper bound is computed on the best possible data rate
achievable as a function of data storage capability in certain very general situa-
tions. The result shows that a dramatic increase in rate can be caused by a small

increase in storage capability.

l. Introduction

Consider an experiment in which samples x are taken
from a sample space X, but no a priori probability distri-
bution can be assumed on X. This is the situation, for ex-
ample, when an experiment is performed for the first time
on a distant planet. Further assume that the experimenter,
who is separated from the experiment by a communica-
tions channel, does not need each value of x exactly, but
rather is satisfied with knowing x “approximately.” The
object of this paper is to discover the relationship be-
tween data transmission rate and data storage capacity
under these circumstances. We shall discover that a small
increase in storage capacity can cause a dramatic increase
in data rate.

We formalize the situation as follows. Let X be a set,
and let S be a collection of subsets of X. When a sample
x€X is obtained, we assume that the experimenter is sat-
isfied to know only some A €S such that x € A. Thus if n
subsets from S, but no fewer, cover X, log, n bits are
required to transmit the outcome of the experiment over
a noiseless channel, except for roundoff in the logarithm.
If, however, N outcomes x;, x,, - - * , xy are stored before
transmission, and ny sets of the form A, X - -+ X A, cover
X X -+ X X, then similarly log, ny bits will suffice to com-
municate the results of the N outcomes simultaneously;
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this corresponds to block source encoding of the data.
Hence (1/N) log. ny will be the number of bits per sample
required when N samples can be stored. Thus if n, < n?
for some N, the data transmission rate can be improved,
preserving the fidelity of each sample. We shall show
that under some circumstances ny actually grows only
linearly in N, which implies that a spectacular gain in
rate can sometimes be achieved with a small increase in
storage. We shall in fact treat the case of simultaneously
transmitting the outcomes of several different experi-
ments, since it is no more difficult to handle this more
general situation.

Il. Results

Suppose that N is a positive integer and that S,, - - -, Sy
are collections of subsets of X;, - - -, Xy, respectively,
such that n; subsets belonging to S;, and no fewer, cover
Xifori=1, - - - ,N. The main result of this paper is that
to cover X; X - - - X Xy requires no fewer than

S (n—~1+1

i=1

and no more than

N
IIn;
i=1
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subsets of the form A, X - - - X Ay, when A; €S; for all 4.
Moreover, we can choose the X; and the S; in such a way
that

S (i~ 1) +1

=1

of the specified subsets will cover X, X - - - X Xy; the
X;, S;, ni, can be taken all equal here. Bounds for the
spanning number (also called the coefficient of external
stability) of a product of graphs are also obtained.

Let S be a collection of subsets of a set X such that
US = X. Define ¢ (X; S), the covering number of X with
respect to S, to be the minimal number of elements of S
whose union is X, if this number exists, and infinity if no
finite subcollection of S covers X. If S,, - - - , Sy are collec-
tions of subsets of X,, - - + , Xy, respectively, define a col-
lection S; X - - -+ X Sy of subsets of the Cartesian product
X, X - XXyby

S, X - X8y={A, X - XAy:A;eS;;i=1,",N}
This paper is concerned with the dependence of
C(X1><><XN,Sl><'><SN)

on the ¢ (Xi;S;). We will restrict ourselves to the case
in which all the ¢ (X;;S;) are finite, since otherwise

c(Xy X - XXy8: X -+ X 8y) =c0.

If the sets A; ;, for ji =1, - - - ,¢(X;; S;) cover X; for
i=1, -, N, then the sets A; ;, X -+ - X Ay,j, cover
X, X - - - X Xy. We then easily obtain the upper bound

N
c(XiX o XXy S X - XSy =TT e(Xi;80)
i=1

Moreover, this bound cannot be improved, since equality
holds whenever an X; consists of n; points and the subsets

in S; consist of single points. Now if n,, - - - , ny are posi-
tive integers, let
L(n, - ,ny)=min{c(X; X -+ XXy 5 X -~

XSN)ZC(Xi;S,-)zni,O:]_’ e ,N}

We will prove (Theorem 1) the rather surprising result
that

Lin, ,m)=3 (i~ 1) +1

i=1
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The last part of this paper deals with direct products
of graphs. Let us recall that if G,, -+, Gy are graphs, their
product G, X - -+ X Gy is defined as the graph having
as its nodes ordered N-tuples (a,, - - - , ax), when a; is

a node of G; for i =1, - - - , N, and whose two nodes
(ai, - - - ,ay) and (by, - - -, by) are connected by an edge
if and only if they are distinct and for eachi=1, - - - |N

either a; = b; or a; is connected to b; by an edge of G..
A talon is defined as a node together with all nodes that
are connected to it by an edge. The spanning number
B (G) (also called the coefficient of external stability
(Ref. 1) of a graph G is the smallest number of talons that
cover (contain every node of) G. It is easy to see that if
G, - -+ , Gy are graphs,

BGX - X G =TI B(G)

We will prove that

BG X -+ XG> (BG)— 1) +1

i=1

and that given any positive integers n,, - - - ,ny there are
graphs G,, - -+ ,Gy with B(G;) =n; fori=1,---,N
such that

BG X - XGy) =3 (m—1)+1

(Again if n; = n, all i, then the G can be taken as equal.)

This paper may be regarded as the dual to the work of
Erdés, McEliece, and Taylor (Ref. 2). If « (G) is the inde-
pendence numbers (maximal numbers of nodes such that
no two are connected by an edge, also called the coeffi-
cient of internal stability [Ref. 1]) of a graph G, then they
proved that
a(Gy X - XGy)=M(a(Gy) +1,--- ,a(Gy)+1)—1
where M (k,, - -, ky) is the Ramsey number of ki, - - -, kx.
It is easy to see that

(G X - X Gy) =TT a(G)

Moreover, they showed that given positive integers
Ny, - - - ,ny, it is possible to find graphs G, - - -, Gy
such that « (G;) = n; for all i and

a(GIX XGN)=M(n1+1,"',nN+1)—l

and the equality remark again holds.
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These theorems correspond to our results on the span-
ning number of a product of graphs. In addition, however,
they can be interpreted as results on packing. If S is a col-
lection of subsets of a set X, define p {X; S) to be the largest
number of elements of S such that any two have an empty
intersection (we will assume that this number is finite).
We can associate with X and S a graph G, where the nodes
of G will be the elements of S and two nodes will be joined
by an edge if and only if this intersection (as subsets of X)
is nonempty. Moreover, given any graph G we can find a
set X and a collection S of subsets of X such that the graph
associated with X and S will be isomorphic to G. The
importance of this correspondence is that if G is the graph
associated with X and S then

«(G) =p(X;9)
and the theorem of Erd6és, McEliece, and Taylor says that

p(XiX s XXy8 X - XSy =M (p(Xy,S)

+ 1, ct ,p(XN,SN) + 1) - ].
and that this bound is the best one possible.

Lemma L If n,, - - -, ny are positive integers, then

L(nl +1)n2: T 7"’N)'§L(n13n2> T )nN)+ 1

Proof. Suppose that S;, - - -, Sy are collections of subsets
of X,, - - -, Xy, respectively, such that ¢ (X;; S,) = n, + 1,
c(Xi;Si)=mn;fori=2,- - ,Nyand ¢ (X, X - -+ X Xy;
S;X - X8y)=L(n,+1,n, - ny). Let A; ; X - X Ay,;
forj=1---,L(n,+1,ny -, ny) be a minimal covering
of X; X -+ X Xy by subsets from S, X - -+ X Sy. Consider

X; :X1 _Al,l = {xeXl:folyl}

and

Si={A—A,.:A€S,)

The sets (Ay,; — A1) X Ay ; X - -+ X Ay for
i:27 e ’L(n1+lyn2> T )nLV)

belong to §7X 8, X --+ X Sy and cover X7 X X, X -+ X Xy,
so that

L{n, +1Ln, - ,ny)

—1=c(XIXXo X+ XX S§i X8 X -+ XSy
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But ¢ (X}; S%) = n, or n, + 1, so that

C(XUX Xy X+ -+ X X3 SiX Sa X+« + X Sy)
=L (n,n, - 0 - ,0) (2)
or
C(XUX XX -+ X Xy SIX Sy X -+ X Sy)
>IL(n,+Ln, - ,ny) (3)

Combining Egs. (1) and (3) leads to an immediate con-
tradiction, and hence Eq. (2) must hold. The lemma now
follows from Egs. (1) and (2).

Tueorem 1. If n,, - - -, ny are positive integers, then

N
L(nl,'-',nN):lE (n; —1)+1 (4)
Proof. Lemma 1, together with the fact that L (k,, - - -, ky)

is a symmetric function and that L (1, -- -, 1) = 1, implies
that

N
L(n, - ,ny)=3F (n — 1) +1 (3)
i=1
To prove Eq. (4) it will therefore suffice if we exhibit X;
and §; such that ¢(X;;S;) =n; fori=1, - - - N and
N
C(XIX o XXN,SIX o XSV)éE (n@_l)'i_l
Let
N
n=3n;—1)+1
i=1
and define, for eachi=1, - - - N

n
X,-—{l,Z, .”’(n—n,-—l-l)}

where (4) are the binomial coefficients. The family S; will
consist of n subsets A; ,, - - - ,A; , formed as follows:

number the
n
n—n; +1

possible (n — n; + 1) subsets (subsets with n —n; + 1
elements) of S; from 1 to

n
n—n,-+1
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and assign the integer i to each of the n — n; + 1 sets in
the ith collection. This way each element of X; will belong
to exactly n — n; + 1 of the sets A, ,, - - - , A;,, and each
n — n; + 1 of these sets will have an element in common.

Let any n;, — 1 sets from S; be given. By their definition
the remaining n — n; + 1 sets have a point x € X; in com-
mon. Since x belongs to exactly n — n; + 1 sets from §;,
it does not belong to any of the given n; — 1 sets. There-
fore these n; — 1 sets do not cover X;. On the other hand,
if any n; subsets from S; are given, then every point x € X;
is contained in at least one of them since it is contained
in n —n; + 1 subsets from S; and aside from the given
ones there are only n — n; subsets remaining. Therefore
C(Xi; Sl) =n;.

Now consider the sets
A;j=A, ;X XAy; fori=1--",n

Suppose x = (x;, - - - ,xy) €X;X- - XXy, We know that

if i is fixed, then x; ¢ A; ; holds for exactly (n; — 1) values

of j. Since x € A; occurs only when x;¢A; ; for at least one i,,
it cannot occur for more than

values of j. Since there are

n=§(ni—1)+1

i=1

sets A:j, we conclude that x € A; for at least one j. Thus the
sets A; provide a cover for X; X - - - X Xy, and hence
c(Xy X -+

: XXN;Slx o XSN)én

This completes the proof of the theorem.

An interesting fact emerges from an examination of the
above theorem. If n, =n, = - - - = n, then a minimal
covering with L{n,, - - - ,ny) sets is obtained by taking
all the X; and likewise all the S; equal. To prove this, just
check that the above construction provides the desired
covering, mutatis mutandis.

Tueorem 2. If G,, - - -, Gy are graphs and B (G) denotes
the spanning number of a graph G, then

BGX - XC)=Z(BG) -1 +1  (6)
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Moreover, given any positive integers n,, - - -, ny there
are graphs G,, - - ,Gy with 8(G;) =n; fori=1,--- N
and

XG)=Sm-1+1 (1)

i=1

B(Glx

Proof. Inequality (6) follows immediately from Eq. (5),
since for each i we can take X; to consist of the nodes of
G; and S; to consist of talons of G;, so that 8 (G;) =
c(Xi;8)and B(G, X - - XGy)=c(Xy X - -+ X Xy
S X -+ X 8y). In fact, Eq. (4) follows from Egs. (5)
and (7). Since the proof of Eq. (7) is considerably more
complicated than that of Eq. (4), however, we treat prod-
ucts of graphs separately from products of arbitrary sets.
Nevertheless, there will be very little duplication in the
two proofs, since we will often refer to arguments used in
proving Theorem 1. The proof of the last part of this
theorem will be based on that of Theorem 1. To carry it
out we will use the auxiliary result below (we might note
that the bound n > 2k + 10 is introduced to simplify the
proof and is not the best possible.) The proof of this
lemma will be given at the end.

LemMa 2. If n and k are positive integers such that
n > 2k + 10, then there exists a graph G with 8(G) =k
which has a subset of n talons such that every node of G
belongs to at least n — k + 1 of these specified n talons.

To complete the proof of Theorem 2 let n,, -+ - - ,ny be
given positive integers. Let us choose the positive integer r
such that if

N
n=3Mn—-1)+1+r

1=1

thenn>2n; +10fori=1 - - - ,N and n > 14. Define
nj=2forj=N-+1,---,N + r. By Lemma 2 there exists
for each i, from 1 to N + r, a graph G; with 8(G;) = n;
and which has a subset of n talons, A; ,, - - -, A; ,, such
that every node of G; belongs to at least n —n; + 1 of
these talons. It now follows, as in Theorem 1, that the n
talons

A~i:A1,j><"'XAN+,,]', 1'=1,"',n

cover G, X * * * X Gy.,, which implies that

XGy)En=3 (- D+1+r (8)

1=1

B(G X -+
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But from Eq. (6) we find that

B(GiX -+ - XGr) =BGy X -+ - X Gy)
+ JB(GN+1 X ot >< GN“—) - 1 (9)
Since

BGIX XG> S (m—1)+1

i=1

and

B(Grua X+ X Gy)>r 41

The inequalities (8) and (9) imply that
BGX -+ XGy)= 3 (g — 1) + 1

which completes the proof of Theorem 2.

Proof of Lemma 2. Let n and k satisfy conditions of the
lemma. We consider two cases.

Case 1: k odd. Let the nodes of G be {1, )
As in Theorem 1 we construct subsets A, -+, A, such
that every n — k + 1 of these has a node in common and
every node in G is in exactly n — k + 1 of these subsets.
Let us look at the incidence matrix (a))(i=1, -  n
and j=1,---,(, % .)) of this configuration, where ai; =1
if j€ A; and a;; =0 otherwise. Since every possible arrange-
ment of n — k + 1 I’s and k — 1 0’s occurs exactly once in
some column, we can permute the columns of this matrix
until the first n of them form a circulant submatrix A of
the form

k1 )
2 2
10...... 01...... 10...... 0
01........ 01...... 10....0
A= (10)
0...... 01...... 10...... 01

Note that this construction can be carried out because
each row (and column) has at least three Is in it (if they
each had two, some two columns would be identical), and
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because k is odd. For our purposes the most important
feature of A is that it is symmetric.

Let us now consider again the full incidence matrix
(ai;), but in its permuted form so that A forms the first n
columns. For each i from 1 to n connect the node 1 to the
node j (for is£) by an edge if and only if a;; = 1. This
defines our graph G. Since A is symmetric, the talon with
center at i(i=n) consists precisely of these nodes i for
which n;; = 1. We will call them the “large talons.” In
addition we have many “small talons” which have centers
at i, when i > n. A small talon with center at i contains
the node i and n — k + 1 nodes j for j=n. Since each
node of G is in n — k + 1 of the large talons, we only need
to show 8(G) = k. Since any k large talons cover G (as
shown in Theorem 1), we know that 3 (G)=k.

Assume B(G) < k. Since 8(G)=1, this implies k=2,
Now 8 (G) < k says that some k — 1 talons cover G. Sup-
pose m of them are large talons. Then m =k — 2, since
we know from Theorem 1 that it requires k large talons to
cover G. Moreover, k=3, since if k = 2 then there are no
small talons. We can choose n — k + 1 large talons from
the n — m remaining ones in (,~3m) ways. Since each
n ~k + 1 large talons have a unique node in common,
which is not in any other large talon, this gives (™
nodes not covered by the m given large talons.

Suppose m = k — 2. This means that one small talon
has to cover (2-%:2) = n — k + 2 nodes. Since exactly one
node i with i > n belongs to any small talon, the m given
large talons had to leave n — k + 1 nodes j with j << n not
covered. But any single large talon covers n — k + 1 of
the nodes j with j =< n, and therefore our m = k — 2> 1
large talons leave uncovered no more than k — 1 nodes.
Since n > 2k + 10, this leads to a contradiction.

Suppose m < k — 2. The k — 1 — m small talons cover
at most (k — 1 — m) (n — k + 2) nodes, while the m large
talons have (,7;™) nodes not covered. It will then suffice
to prove that

<n:’fl)>(k—m—1)(n—k+z)

Now if m =k — 3,

n—k+1/" >2(n—m—1)

( n—m )_(n—m)(r;——m——l)
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sincen>2k+10>m+ 4. Let t =k — m — 3. Then

() =(as) ="

— k 3)t+1
Skt kLI v +2>!)
>(n—k+2) __(k(;_l;;;“
(k + 13)¢

>(n—k+2)(k—m—1)m

>n—k+2)(k—m—1)
for 1 =< ¢ =k — 3, since in that range

(k + 13)°
EDe

(easy induction proof). This completes the proof when

k is odd.

Case 2: k even. Consider the same construction as in
case 1, but with n and k replaced by n + 1 and k + 1,
respectively. In the (n + 1) X (,":1,) incidence matrix (a;;)
which has its first n + 1 columns in the form (10) delete
the first row and the first column. The first n columns of
the resulting n X (,*;1,) incidence matrix (b;;) form a
symmetric submatrix. The graph G will have as its nodes
(1, - -+, (,mL) — 1}. If i=n, we connect i to j (i547) by
an edge if and only if b;; = 1. It is easily seen that every

node of G belongs to either n — k + 1 or n — k + 2 of the
n talons with centers at 1, - - + ,n. The proof of case 1
shows that 8 (G) = k, mutatis mutandis.

As a concluding remark we would like to pose another
interesting problem. If G is a graph, y(G), the clique
covering number, is defined to be the minimal number of
cliques (complete subgraphs) which cover G.If G,,..., Gy
are graphs, then clearly

y(GiX - ><cN>éﬁly<ci)

and this bound cannot be improved. The question of ob-
taining the best possible lower bound for y (G, X -+ X Gy)
in terms of the y (G;) is unsolved. The answer is different
from that for spanning numbers, since if y (G,) = 2, then
v(Gy X G;) = 2y (G,). Combined with a modified version
of Lemma 1 this provides a general lower bound for
y(G1 X - -+ X Gy), but it is not known whether it is the
best possible. In particular, it is not known whether two
sequences {G™} and {H ™} of graphs can be found such
that y(G™) =y (H™) =n and y(G™ X H™) = 0(n?).
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